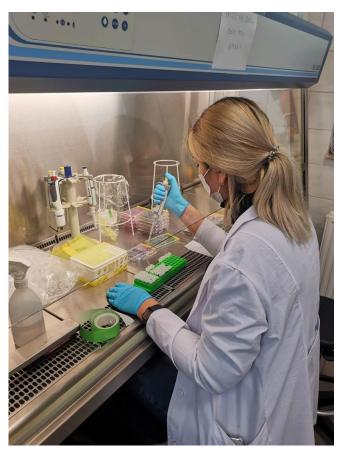
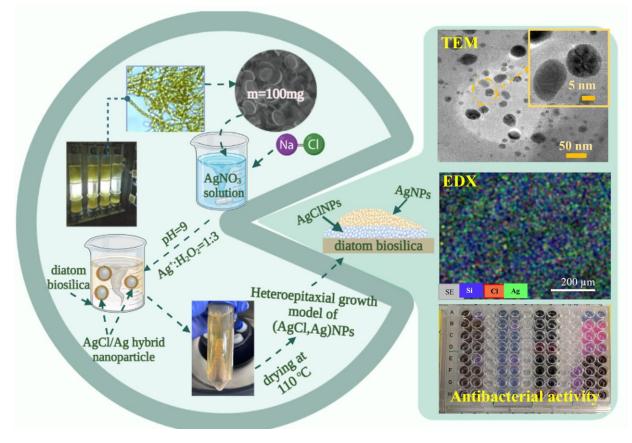
IRN AP14972864 "Synthesis, characterization, photoluminescent and antibacterial properties of europium/biosilica and silver/biosilica based nanomaterials"
Diatom algae shells are composed of hydrated silica, which exhibits special properties including biocompatibility, surface chemistry and porosity, chemical inertness and thermal stability. Stems collected from aquatic ecosystems or diatom fossil sediments represent an excellent economic source of biosilica for a wide range of biomedical applications. The porous ultrastructure of the shells presents a large surface area available for coating with various biomolecules using different functionalization techniques. The scientific research of this project is aimed at obtaining biosilica-based nanocomposites with antibacterial and photoluminescent properties.
The goal of the work is to obtain environmentally friendly biosilica from diatom algae with traditional microbiological cultivation from diatomite. Synthesis, characterization, and study of antibacterial and photoluminescent properties of nanomaterials based on europium/biosilica and silver/biosilica.
 Conduct a scientifically based selection of methods for preparing diatomite for the cultivation of diatoms. Selection of a method for purifying diatoms from organic substances, selection of the optimal concentration, temperature, pH of the medium and reagents. Scientifically based selection of the synthesis of nanocomposites silver nanoparticles/biosilica, europium/biosilica, silver/europium/biosilica. Obtaining diatom algae from Kazakhstan diatomite. Cultivation and further purification from organic compounds. Synthesis of silver nanoparticles/biosilica nanocomposites. Study of physicochemical characteristics of the obtained nanocomposites. The obtained composites will be studied by SEM, SEM EDX, TEM, X-ray diffraction analysis, IR spectroscopy, TGA-DSC and zeta potential determination. Investigation of antibacterial activity of the obtained silver nanoparticles/biosilica nanocomposite. Investigation of photoluminescent properties by optical spectroscopy. Photoluminescent properties of the obtained silver nanoparticle/biosilica composites will be studied by optical spectroscopy. Synthesis of europium/biosilica nanocomposites and silver nanoparticles/europium/biosilica nanocomposites
_


Brief information about the project

	Study of physicochemical characteristics of the obtained
	nanocomposites.
	The obtained composites will be studied by SEM, SEM
	EDX, TEM, X-ray diffraction analysis, IR spectroscopy,
	TGA-DSC and zeta potential determination.
	2) Investigation of antibacterial activity of the
	obtained europium/biosilica silver
	nanoparticles/europium/biosilica nanocomposites against
	gram-positive Staphylococcus aureus and gram-negative
	Klebsiella pneumoniae, Escherichia coli bacteria.
	3) Investigation of photoluminescent properties by
	optical spectroscopy.
Expected and achieved results	Expected Results:
	1) A scientifically based selection of diatomite preparation
	for the cultivation of diatoms will be carried out. Selection
	of a method for purifying diatoms from organic
	substances, selection of the optimal concentration,
	temperature, pH of the medium and reagents. Scientifically
	based selection of the synthesis of nanocomposites silver
	nanoparticles/biosilica, europium/biosilica,
	silver/europium/biosilica. Preparation of a report on the
	work done.
	2) Silver nanoparticle/biosilica nanocomposites will be
	synthesized with Ag+ concentrations of 5 and 10%
	depending on the mass of biosilica used. The morphology
	and structure of the synthesized composites will be
	determined using scanning electron microscopy. The
	elemental composition will be studied by SEM EDX. The
	mineral composition and formation of silver nanoparticles
	will be identified by X-ray diffraction analysis.
	Thermogravimetric analysis will be carried out by TGA-
	DSC. Functional groups will be identified by IR
	spectroscopy and the zeta potential of the synthesized
	nanocomposites will be determined.
	3) The antibacterial activity potential of the obtained silver
	nanoparticles/biosilica nanocomposite against gram-
	positive Staphylococcus aureus and gram-negative
	Klebsiella pneumoniae, Escherichia coli bacteria by the
	minimum inhibitory concentration method will be
	investigated.
	-
	Photoluminescent properties of the obtained silver
	nanoparticle/biosilica composites will be studied by
	optical spectroscopy.
	Achieved results:
	1) Synthesis of silver nanoparticles with Ag+
	concentration of 5 and 10% with respect to the biosilica
	mass. The elemental composition by SEM EDX method of
	nanocomposites containing 4.61 and 8.49 % silver was
	determined. The dominant nanoparticles range from 5 to
	15 nm. Nanoparticles of 1-2 nm and particles of 20-40 nm
	are also present. Crystallites called parallel twins are also
	found.
	IVUIU.


	2) The antibacterial activity potential of silver nanoparticle/biosilica nanocomposite against gram-
	1 1 0 0
	positive Staphylococcus aureus and gram-negative
	Klebsiella pneumoniae, Escherichia coli bacteria by the
	minimum inhibitory concentration method was
	investigated. The obtained nanomaterials showed
	antibacterial effect against bacterial strains, American
	Type Culture Collection and clinical isolates (diabetic foot
	infection and wound isolates). The MIC value was found
	to be 1.25 mg/mL in both cases. 2) Photoluminescent
	properties of the obtained silver nanoparticle/biosilica
	composites were studied by optical spectroscopy.
	3) Photoluminescence spectra of biosilica and
	obtained (AgCl-Ag) NPs/biosilica composites containing
	different percentages of silver: 4.61% and 8.49%.
	According to the obtained photoluminescence spectra, four
	main types of photoluminescent activity (PL) can be
	identified in both composites. The initial type of PL is
	associated with excitation at 270 nm and emission at 335-
	425 nm in the UV spectrum. The strongest
	photoluminescence in this region was observed at 335,
	380, 395, 397, 413 and 420 nm.
Research team members with	1. Bekissanova Zhanar Bolatovna, Scientific
their identifiers (Scopus Author	supervisor of the project, postdoctoral fellow, RA, Al-
ID, Researcher ID, ORCID, if	Farabi KazNU, lecturer at the Department of Physical
available) and links to relevant	Chemistry, Catalysis and Petrochemistry h-index-3,
profiles	https://orcid.org/0000-0001-6142-0963, ScopusID=
1	57218598280
	2. Myroslav Sprynskyy, Performer, Lead researcher,
	scientific consultant, PhD,DSc, Professor, Nicolaus
	Copernicus University of Torun, Poland, h-index-22,
	https://orcid.org/0000-0002-4334-3594, ResearcherID:
	GCQ-0369–2022; Scopus ID: 18438744500.
	3. Ospanova Aliya Kapanovna, scientific consultant,
	Professor of the Department of Physical Chemistry,
	Catalysis and Petrochemistry h-index-5,
	https://orcid.org/0000-0001-9954-8575, Scopus
	ID=55340038000; ResearcherID: ABE-7029-2021.
List of publications with links to	1. Bekissanova, Z., Railean, V., Wojtczak, I.,
them	Brzozowska, W., Trykowski, G., Ospanova, A., &
	Sprynskyy, M. (2023). Synthesis and Antimicrobial
	Activity of 3D Micro–Nanostructured Diatom Biosilica
	•
	Coated by Epitaxially Growing Ag-AgCl Hybrid Nanoparticles Biomimetrics $Q(1)$ 5 $Q(2)$ (IE-4.5)
	Nanoparticles. Biomimetics, 9(1), 5. Q2, (IF=4.5).
Detents	https://doi.org/10.3390/biomimetics9010005
Patents	

Cultivation of diatoms

Study of the antibacterial activity of the obtained composites

Scheme for the production of nanocomposites from biosilicon